Publications
University of Jena, Germany
- Würfel, H., Geitel, K., Günther, W., Anufrie, I., Schubert; U. S., Nischang, I., Heinze, T. (2022) Glucose scavenging with pectin hydrazide: A step toward designing innovative, functional, all-sugar-based polymers. Macromolecular Chemistry and Physics, DOI: 10.1002/macp.202200241
- Lindemann, H., Kühne, M., Koschella, A., Godmann, M., Heinzel; T., Heinze, T. (2022) HDACi delivery systems based on cellulose valproate nanoparticles. in: “HDAC/HAT Function Assessment and Inhibitor Development – Methods and Protocols”, O. H. Krämer (Ed.), Springer Nature, vol. 2589, pp. 195-205.
- Kühne, M., Hofmann, S., Lindemann, H., Cseresnyés, Z., Dzierza, A., Schröder, D., Godmann, M., Koschella, A., Eggeling, C., Fischer, D., Figge, M. T., Heinze, T., Heinzel, T. (2022) Analysis of HDACi-coupled nanoparticles: Opportunities and challenges. in: “HDAC/HAT Function Assessment and Inhibitor Development – Methods and Protocols”, O. H. Krämer (Ed.), Springer Nature, vol. 2589, pp. 129-144.
- Kemmer, A., Qi, H., Heinze, T. (2022) Clickable polymers accessible through nucleophilic substitution on polysaccharides: A sophisticated route to functional polymers. BioResources, 17, 7267-7284.
- Gericke, M., Skodda, L. H., Heinze, T. (2022) Reactive xylan derivatives for azid-/alkyne-click-chemistry approaches – From modular synthesis to gel-formation. Carbohydrate Polymers, 300, 120251.
- Schmidt, S., Gericke, M., Heinze,T. (2022) Side reactions during the homogeneous esterification of starch with unsaturated cinnamic acid derivatives in molten imidazole. Lenzinger Berichte, 97, 62-67.
- Würfel, H., Pelloth, G., Heinze, T. (2022) Synthesis of novel polygalacturonic acid hydrazones and their rheological and emulsifying properties. Lenzinger Berichte, 97, 56-61.
- Koschella, A., Heinze, T. (2022) 6-Deoxy-6-hydrogenocelluose: Synthesis and characterization of cellulose with reduced functionality. Lenzinger Berichte, 97, 50-55.
- Kemmer, A., Heinze, T. (2022) Efficient synthesis of S-protected thiolated polysaccharide xylan. Reactive and Functional Polymers, 181, 105418.
Petru Poni, Institute of Macromolecular Chemistry Iasi, Romania
- Asandulesa, M., Chibac-Scutaru, A. L., Culica, M. E., Melinte, V., & Coseri, S. (2023). Cellulose-based films with enhanced load of nitrogen containing heterocycles: The impact on the surface morphology and proton conductivity. Applied Surface Science, 607, 155077. https://doi.org/10.1016/j.apsusc.2022.155077
- Cui, S., Zhang, S., & Coseri, S. (2023). An injectable and self-healing cellulose nanofiber-reinforced alginate hydrogel for bone repair. Carbohydrate Polymers, 300, 120243. https://doi.org/10.1016/j.carbpol.2022.120243
- Dragan, E. S., Ghiorghita, C. A., Dinu, M. V., Duceac, I. A., & Coseri, S. (2023). Fabrication of self-antibacterial chitosan/oxidized starch polyelectrolyte complex sponges for controlled delivery of curcumin. Food Hydrocolloids, 135, 108147. https://doi.org/10.1016/j.foodhyd.2022.108147
- Culica, M. E., Chibac-Scutaru, A. L., Asandulesa, M., Melinte, V., Cojocaru, C., & Coseri, S. (2022). Convertible cellulosic platforms with manageable loads of 1-hydroxybenzotriazole: their preparation and conductive behavior. Cellulose, 29, 9847–9863. https://doi.org/10.1007/s10570-022-04865-3
- Culica, M. E., Rotaru, R., Bejan, D., Coroaba, A., Mohan, T., & Coseri, S. (2022). Cellulose surface modification for improved attachment of carbon nanotubes. Cellulose, 29(11), 6057–6076. https://doi.org/10.1007/s10570-022-04640-4
- Duceac, I. A., & Coseri, S. (2022). Biopolymers and their derivatives : Key components of advanced biomedical technologies. Biotechnology Advances, 61, 108056. https://doi.org/10.1016/j.biotechadv.2022.108056
- Duceac, I. A., Tanasa, F., & Coseri, S. (2022). Selective Oxidation of Cellulose-A Multitask Platform with Significant Environmental Impact. Materials, 15(14), 5076. https://doi.org/10.3390/ma15145076
- Melinte, V., Trifan, S. I., Chibac-Scutaru, A. L., Podasca, V., & Coseri, S. (2022). Reusable catalysts based on CeO2/cellulose derivative with visible light photocatalytic activity tuned by noble metal nanoparticles inclusion. International Journal of Biological Macromolecules, 222, 736–749. https://doi.org/10.1016/j.ijbiomac.2022.09.221
- Baron, R. I., Duceac, I. A., Morariu, S., Bostanaru-Iliescu, A. C., & Coseri, S. (2022) Wound dressing hydrogels with physical networks based on oxidized pullulan/dopamine for non-compressive bleeding management. Gels, 8, 726.
- Yao, X., Zhang, S., Qian, L., Wei, N., Nica, V., Coseri, S., & Han, F. (2022). Super Stretchable, Self-Healing, Adhesive Ionic Conductive Hydrogels Based on Tailor-Made Ionic Liquid for High-Performance Strain Sensors. Advanced Functional Materials, 32(33), 2204565. https://doi.org/10.1002/adfm.202204565
TU Graz IBisSys, Austria
- Diaminocyclopentane-Derived O-GlcNAcase Inhibitors for Combating Tau Hyperphosphorylation in Alzheimer’s Disease
Weber, P., Mészáros, Z., Jagečić, D., Hribljan, V., Mitrečić, D., Bojarová, P., Slámová, K., Vrba, J., Kulik, N., Křen, V., Stütz, A. E., Chemical Communication., 2022,58, 8838-8841, https://doi.org/10.1039/D2CC02712G
- Unraveling the Timescale of the Structural Photo-Response Within Oriented Metal-Organic Framework Films
Klokic, S., Naumenko, D., Marmiroli, B., Carraro, F., de las Mercedes Linares-Moreau, M., Dal Zilio, S., Birarda, G., Kargl, R., Falcaro, P., Amenitsch, H., Chemical Science., 2022,13, 11869-11877, https://doi.org/10.1039/D2SC02405E
- Nano-Fibrillated Cellulose-Based Scaffolds for Enzyme (Co)-Immobilization: Application to Natural Product Glycosylation by Leloir Glycosyltransferases
Liu, H., Dobaj Štiglic, A., Mohan, T., Kargl, R., Stana Kleinschek, K., Nidetzky, B., International Journal of Biological Macromolecules 222 (2022) 217–227, https://doi.org/10.1016/j.ijbiomac.2022.09.160
- 3D Printing in the Planning and Teaching of Endovascular Procedures
Stana, J., Grab, M., Kargl, R., Tsilimparis, N. Radiologie (2022). https://doi.org/10.1007/s00117-022-01047-x
- Cellulose Surface Modification for Improved Attachment of Carbon Nanotubes
Culica, M. E., Rotaru, R., Bejan, D., Coroaba, A., Mohan, T., Coseri, S., Cellulose 29, 6057–6076 (2022). https://doi.org/10.1007/s10570-022-04640-4
- Organic Acid Crosslinked 3D Printed Cellulose Nanocomposite Bioscaffolds with Controlled Porosity, Mechanical Strength and Biocompatibility
Dobaj Štiglic, A., Gürer, F., Lackner, F., Bračič, D., Winter, A., Gradišnik, Č., Makuc, D., Kargl, R., Duarte, I., Plavec, J., Maver, U., Beaumont, M., Stana Kleinschek, K., Mohan, T., iScience, 25, 104263, 20, 2022, https://doi.org/10.1016/j.isci.2022.104263
- Humidity Response of Cellulose Thin Films
Reishofer, D., Resel, R., Sattelkow, J., Fischer, W. J., Niegelhell, K., Mohan, T., Stana Kleinschek, K., Amenitsch, H., Plank, H., Tammelin, T., Kontturi, E., Spirk, S., Biomacromolecules 2022, 23, 3, 1148–1157, https://doi.org/10.1021/acs.biomac.1c01446
- Solid Phase Peptide Synthesis on Chitosan Thin Films
Katan, T., Kargl, R., Mohan, T., Steindorfer, T., Mozetič, M., Kovač, J., Stana Kleinschek, K., Biomacromolecules 2022, 23, 3, 731–742, https://doi.org/10.1021/acs.biomac.1c01155
- One-Step Fabrication of Hollow Spherical Cellulose Beads: Application in pH-Responsive Therapeutic Delivery
Mohan, T., Ajdnik, U., Nagaraj, C., Lackner, F., Dobaj Štiglic, A., Palani, T., Amornkitbamrung, L., Gradišnik, L., Maver, U., Kargl, R., Stana Kleinschek, K., ACS Applied Materials and Interfaces 2022, 14, 3, 3726–3739, https://doi.org/10.1021/acsami.1c19577
- Polysaccharide Peptide Conjugates: Chemistry, Properties and Applications
Mohan, T., Stana Kleinschek, K., Kargl, R., Carbohydrate Polymers 280 (2022) 118875, https://doi.org/10.1016/j.carbpol.2021.118875
- Patent 2022, In-situ alignment of dielectric fibers using electric fields in extrusion processes, European patent, Ref.no.: E_0991
Inventors: Florian Lackner, Karin Stana Kleinschek, Rupert Kargl
Abstract: Precise control of fiber orientation in composites is critical to the mechanical, electrical, optical, and biological properties of many materials. Our technology enables in-situ alignment of dielectric micro- and nanofibers during extrusion of any type of nonconductive polymer matrix. Fiber alignment is possible in all three spatial dimensions, it can be dynamically changed during extrusion, and it can be used to produce 3D objects with unprecedented and enhanced anisotropic properties.