• Home
  • About Us
    • History
    • Activities
    • Team
    • Ongoing Projects
  • Discover Polysaccharides
    • Research Roadmap
    • Scientific Journals and Books
    • Expert Lectures
  • Events
    • Upcoming Events
    • International Conferences
    • Junior Scientists Meetings
    • Workshops
    • Other Events
  • Membership
    • Membership Benefits
    • Our members
    • Careers
  • News
    • Newsletters
  • Contact
    • Subscribe
  • Member Area
Menu
  • Home
  • About Us
    • History
    • Activities
    • Team
    • Ongoing Projects
  • Discover Polysaccharides
    • Research Roadmap
    • Scientific Journals and Books
    • Expert Lectures
  • Events
    • Upcoming Events
    • International Conferences
    • Junior Scientists Meetings
    • Workshops
    • Other Events
  • Membership
    • Membership Benefits
    • Our members
    • Careers
  • News
    • Newsletters
  • Contact
    • Subscribe
  • Member Area
Search
Close

Ongoing Projects

Publicly Funded Projects

Here we list publicly funded projects from the last 5 years

Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Poland

Development and implementation of an innovative technology for the production new generation fruit and vegetable products enriched with dietary fibre preparation from potato starch with prebiotic properties for children and youth  (2020-2023)
PI: Janusz Kapusniak
Funding agency: Polish National Center for Research and Development (NCBR).
The PreSTFibre4kids project is coordinated by Jan Dlugosz University in cooperation with the most modern specialist pediatric hospital in Poland, the biggest comprehensive cancer center in Poland, one of the leading juice, nectar and soft drink producer in Poland and one scientific partner. The main goal of the project is to conduct development works, which will result in the development and implementation of the technology of production of unsweetened vegetable and fruit products enriched with a fibre preparation from potato starch with prebiotic properties and acceptable organoleptic and appropriate storage stability by children and adolescents.
For further information: Click here

University of Innsbruck, Research Institute of Textile Chemistry and Textile Physics

Biotechnological Enzymatic Modification of Lignocellulosic Natural Fibres, 2020-2023
PI: Tung Pham
Funding agency: FFG, Austria
The overall objective of the project proposal is to develop a biotechnological enzyme-based modification process for natural lignocellulose stem fibres. Thus, the proposal represents the development of an eco-friendly modification method for European bio-based natural lignocellulosic fibres. The technology will significantly contribute to debottleneck the issue with the fibre softness and processability of stem fibre.
For further information: click here

BOKU, Austria

Oxidative Modification of Cellulose
PI Potthast, A.

The aim of the planned work is to achieve lean, cost-efficient and green chemical routes to improve the properties of kraft pulp for thermoplastic materials. The cellulose chain is intrinsically rigid, which is one of the causes of its high glass transition and melting temperatures. The offered research targets to increase the mobility of the cellulose chain through oxidation chain cleavage methods, that decrease H-bonds in which the anhydroglucose units are involved and induce a major release of molecular motions within and between the chains.

Lignin Binder
PI Potthast, A.

The aim of the development in the project “Lignin as a binder” is to modify or select lignin (as raw material) in such a way that it can be used alone or in combination as a binder for wood-based materials. Different lignins will be tested and analysed to establish valid structure-property relationships. In addition to the analytical characterisation, special application tests are carried out which can show suitability even outside of an analytical scale.

5D-Click-Druck zur Herstellung von Strukturen mit Mechanischen und Funktionellen Gradient

PI Beaumont, M.
The research hypothesis is the development of a novel gradient printing approach, named 5D Click Printing, combining cutting-edge bioprinting technology with state-of-the-art materials and crosslinking chemistry. This will be realized by using functional nanocellulose and polyoxazoline as ink formulations to produce 3D objects with mechanical (+1D) and functional gradients (+1D). The proposed ink formulations are based on functional cellulose nanofibrils and polyoxazolines.

Mechanical and functional gradients are reasons for the abundance of functionalities and extraordinary mechanical properties in nature. Mechanical gradients are spatial smooth transitions from mechanically weak to strong structures resulting in materials with remarkable mechanical performance. In case of the in vivo cell environment, the extra-cellular matrix, there are not only mechanical gradients present but also functional gradients, such as an increasing concentration of a bio-active molecule in one dimension. These gradients play an important role in the organization of cells into functional tissues and organs. The imitation of these multidimensional structures by biocompatible and shapeable materials in a straightforward way is a critical challenge that will be addressed in this proposal. The research hypothesis is the development of a novel gradient printing approach, named 5D Click Printing, combining cutting-edge bioprinting technology with state-of-the-art materials and crosslinking chemistry. This will be realized by using functional nanocellulose and polyoxazoline as ink formulations to produce 3D objects with mechanical (+1D) and functional gradients (+1D). The proposed ink formulations are based on functional cellulose nanofibrils and polyoxazolines. These materials were chosen because of their established biocompatibilities, printabilities and the resemblance to the two main components of the extra-cellular matrices, fiber-forming proteins and non-fibrous glycoproteins. The functional groups on the polymers were carefully selected to allow gelation by spontaneous click chemistry, which can be conducted in the presence of living cells. The 5D Click Printing technology will be further developed to fabricate multidimensional hydrogels with various functionalities. These gels will be used to assess and compare diverse characterization techniques to establish a methodology to visualize gradients in multidimensional objects. In conclusion, the developed technology will be the first straightforward avenue to shaped hydrogels with functional and mechanical gradients. 5D Click Printing will be used to fabricate, bioinspired and sophisticated tissue models for biomedical application, and to produce graded membranes for chromatographic separation of complex biopolymer mixtures.

Mid Sweden University, Sweden

Can triboelectricity provide more effective respiratory protection against viruses?
From November 2020 to May 2021
Dr Christina Dahlström
Funding agency: Vinnova (Sweden’s Innovation Agency) 
A research group at the FSCN research centre, Mid Sweden University will develop more effective filter materials for respiratory protection that can be used to reduce the spread of viruses, similar to Cov-SARS-2, to counter pandemics. The respiratory protection is based on cellulose material with triboelectric properties, which makes it easier to breathe than with today’s respiratory protection.

More info can be found on the press release, click here.
Illustration: Fredrik Dahlström.

About EPNOE

The European Polysaccharide Network of Excellence is a non-profit Association promoting research, education, and knowledge-transfer between academia, industry, and civil society, in all fields related to polysaccharides science and technology.

Click here to

Join EPNOE

Our organization provides consulting, ideas, and resources for people working to create meaningful change.

Facebook
Youtube
Linkedin

Contact

EPNOE Association
Department of Chemical Engineering
KU Leuven
Celestijnenlaan 200F bus 2424
Leuven Chem&Tech -3rd Floor
Office: 03.113
B-3001 Leuven, Heverlee
Belgium

 

© All rights reserved EPNOE Association 2019

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.

SAVE & ACCEPT