• Home
    • About Us
      • History
      • Activities
      • Executive Board
      • EPNOE Junior
    • Facts About Polysaccharides
  • Research
    • Research Roadmap
    • Ongoing Projects
    • Scientific Journals and Books
  • Education
    • Skills Roadmap
    • Web-Togethers
  • Videos
    • EPNOE Talks
    • Lectures
    • Videos Members
    • Webinars
  • Events
    • Upcoming Events
    • International Conferences
    • Junior Scientists Meetings
      • Junior Scientist Meeting 2024
        • Junior Scientist Meeting 2024 – Abstract Submission
        • Junior Scientist Meeting 2024 – Practical Information
        • Junior Scientist Meeting 2024 – Programme
    • Workshops
    • Summer Schools
    • Other Events
    • Bioeconomy Innovation
  • EPNOE Awards
  • Membership
    • Membership Benefits
    • Our members
  • Jobs
    • Vacant Positions
  • News
    • News
    • Newsletters
  • Contact
  • Subscribe
  • Member Area
  • Home
    • About Us
      • History
      • Activities
      • Executive Board
      • EPNOE Junior
    • Facts About Polysaccharides
  • Research
    • Research Roadmap
    • Ongoing Projects
    • Scientific Journals and Books
  • Education
    • Skills Roadmap
    • Web-Togethers
  • Videos
    • EPNOE Talks
    • Lectures
    • Videos Members
    • Webinars
  • Events
    • Upcoming Events
    • International Conferences
    • Junior Scientists Meetings
      • Junior Scientist Meeting 2024
        • Junior Scientist Meeting 2024 – Abstract Submission
        • Junior Scientist Meeting 2024 – Practical Information
        • Junior Scientist Meeting 2024 – Programme
    • Workshops
    • Summer Schools
    • Other Events
    • Bioeconomy Innovation
  • EPNOE Awards
  • Membership
    • Membership Benefits
    • Our members
  • Jobs
    • Vacant Positions
  • News
    • News
    • Newsletters
  • Contact
  • Subscribe
  • Member Area

Research Articles

Coupling molecular imprinting technology and biosensorics

T. Zidarič1
1 Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia (tanja.zidaric@um.si)
 
The field of biosensing has continuously grown in recent years. The rapid, selective, and cost-effective detection and determination of clinically relevant biomolecule analytes to better understand their biological and physiological functions or allow for early disease detection is becoming increasingly important. Naturally occurring “receptors” have a unique ability to interact with target molecules specifically. As a recognition element of biosensors, these receptors dictate the refined selectivity of a device. However, they are subject to instability under harsh environmental conditions and low durability. Using supramolecular chemistry principles, molecularly imprinted polymers (MIPs) can successfully replace natural receptors to circumvent these shortcomings.
 
Polymerization of suitable functional monomers in the presence of a target molecule that serves as a template creates a synthetic material with “molecular memory”. Subsequent removal of the template molecule leads to the formation of selective molecular recognition sites that can mimic the binding sites of antibodies (so-called “plastic antibodies”). Coupled with biosensor-based technology MIPs are expected to be used as recognition elements in decentralized medical diagnostics [1, 2].
 
For direct immobilization of the MIP-based layer on the sensor surface, electropolymerization is the simplest approach. All steps of MIP electrosynthesis and measurement can be evaluated directly by the presence of the captured target molecule in the MIP layer or indirectly by signal changes of a redox marker (e.g., ferrocyanide/ferricyanide redox couple) [3].
 
In the project funded by the Ministry of Education, Science, and Sports (grant number: C3330-19-952027) we combine molecular recognition by electrosynthesized MIP with an electrochemical transducer to create a biomimetic sensor for insulin detection. Since such sensors present a fast and simple alternative to clinical or ELISA-based methods of insulin detection, they could present a reasonable future approach for point-of-care devices. These could lead to more efficient diabetes type 1 control in patients in combination with continuous glucose monitoring.
Figure: The concept of electrosynthesized MIP preparation for insulin detection.
 
Acknowledgment
The authors acknowledge the financial support from Ministry for Education, Science, and Sport (grant number: C3330-19-952027) and the Slovenian Research Agency (grant number: P3-0036).
 
References
[1] Y. Saylan, S. Akgönüllü, H. Yavuz, S. Ünal, A. Denizli, Molecularly imprinted polymer based sensors for medical applications, Sensors 19(6) (2019) 1279.
[2] M. Cieplak, W. Kutner, Artificial biosensors: How can molecular imprinting mimic biorecognition?, Trends in biotechnology 34(11) (2016) 922-941.
[3] A. Yarman, F.W. Scheller, How Reliable Is the Electrochemical Readout of MIP Sensors?, Sensors 20(9) (2020) 2677.

About EPNOE

The European Polysaccharide Network of Excellence is a non-profit Association promoting research, education, and knowledge-transfer between academia, industry, and civil society, in all fields related to polysaccharides science and technology.

 

Join EPNOE

Our organization provides consulting, ideas, and resources for people working to create meaningful change.

Contact

EPNOE Association
Department of Chemical Engineering
KU Leuven
Celestijnenlaan 200F bus 2424
Leuven Chem&Tech -3rd Floor
Office: 03.113
B-3001 Leuven, Heverlee
Belgium
contact@epnoe.eu

 
Facebook Youtube Linkedin Twitter

© All rights reserved EPNOE Association 2019 - Privacy Statement

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT